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1. Introduction 
 

Schrödinger’s wave mechanics formulation of quantum mechanics is a mainstay of the physics undergraduate 

curriculum. However, at times, analytical solutions to Schrödinger’s equations may not be possible. 

Perturbation theory allows for approximate solutions, but the framework breaks down for large perturbations. 

For certain cases, particularly the ones with manifest Lorenz covariance, path integrals are a useful approach 

to quantum mechanics. Unfortunately, analytical solutions to this framework are significantly challenging. 

Thus, we turn to numerical solutions. A special motivation for this is that the Monte Carlo method has a 

direct correspondence to the canonical ensemble of statistical mechanics. Thus, we’re able to draw a 

connection between the physical properties of the quantum theory and statistical physics.  

 

In this study, we want to explore how quantum mechanical problems that are typically difficult to solve 

analytically in the Schrödinger framework, and not always have reliable perturbative solutions, can be 

formulated into the path integral framework. We will solve them using the Markov Chain Monte Carlo 
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(MCMC) method, drawing an analogy between the path integral and the canonical partition function. We 

will explore how the Monte Carlo method uses this correspondence to find various correlation functions from 

the statistical theory that can yield physical observables. To make this analysis, we use the familiar one-

dimensional quantum harmonic oscillator. It is physically relevant because any system near a local stable 

equilibrium can be approximated as such. To make the approximation more realistic, higher order corrections 

can be added to the potential. We consider the quartic correction to the harmonic potential. We compare the 

perturbative solutions for the ground and first excited state energies with MCMC solutions and illustrate the 

instability of the perturbative solutions versus the stability of numerical solutions, thus, exploring a powerful 

numerical alternative to analytically difficult problems. 

 

2. Quantum oscillators 

 

2.1. Harmonic potential 
 

 

The one-dimensional quantum harmonic oscillator is subject to a harmonic potential of the form: 

 

𝑉(𝑥) = 𝑎𝑥2 

…(1) 

The Hamiltonian of this system in the position basis is given by: 

 

�̂� =  −
ℏ2

2𝑚

   𝑑2

𝑑𝑥2 +
𝑚𝜔2𝑥2

2
 

…(2) 

 

Where m is the mass, 𝜔 is the natural frequency and x is the position of the oscillator. The action of the 

Hamiltonian on an energy eigenfunction, 𝜓, for energy E gives the Schrödinger time-independent 

equation.  

 

�̂�𝜓 = (−
ℏ2

2𝑚

   𝑑2

𝑑𝑥2 +
𝑚𝜔2𝑥2

2
) 𝜓 = 𝐸𝜓 

…(3) 

 

 

The solution of this second order ordinary differential equation requires us to find the energy 

eigenvalues and the normalizable energy eigenfunctions of the system. This can either be done using 

the power series method to find a wavefunction in terms of Hermite Polynomials or using a rather non-

intuitive algebraic method by constructing special lowering and raising operators which generate the 

entire spectrum of the quantum harmonic oscillator.  

 

The energy eigenvalues for the nth excited state of this system are given by: 
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𝐸𝑛 = ℏ𝜔 (𝑛 +
1

2
) 

…(4) 

 

For 𝑛 ∈ {0, 1, 2, 3 … }. The energy eigen-function in the nth excited state is 

 

𝜓𝑛(𝑥) = (
𝑚𝜔

𝜋ℏ
)

1
4 1

√2𝑛𝑛!
 𝐻𝑛(𝜉)𝑒−𝜉2/2  

…(5) 

 

Where 𝜉 ≡  √
𝑚𝜔

ℏ
𝑥, 𝐻𝑛(𝜉) are Hermite polynomials. Therefore, for the ground and the first excited 

states, the energy eigen-functions take the following form: 

 

𝜓0(𝑥) = (
𝑚𝜔

𝜋ℏ
)

1
4

𝑒−
𝑚𝜔
2ℏ  𝑥2

 

…(6) 

𝜓1(𝑥) = (
𝑚𝜔

𝜋ℏ
)

1
4

√
2𝑚𝜔

ℏ
 𝑥 𝑒−

𝑚𝜔
2ℏ  𝑥2

 

…(7) 

 

Thus, in the ground state, we expect a gaussian wavefunction.  

 

 

2.2. Non-degenerate Perturbation Theory 

 
Perturbation theory develops a framework for approximating solutions to analytical problems when a 

small perturbation is introduced into the original problem, rendering it difficult or even impossible to 

be solved using analytical methods. In the context of quantum mechanics, consider a usual unperturbed 

Hamiltonian, 𝐻0, perturbed by an arbitrary operator, 𝐻′. Note the emphasis on the fact that 𝐻′ is a mere 

perturbation, therefore, it is coupled weakly to 𝐻0. The net perturbed Hamiltonian becomes: 

 

𝐻 = 𝐻0 +  𝜆𝐻′ 

…(8) 

where 𝜆 is a small coupling parameter.  𝐻 has leading contributions from 𝐻0. Perturbation theory allows 

us to write the energy eigenvalues and energy eigen-functions of this new perturbed Hamiltonian as a 

power series of the coupling constant.  

 

𝐸𝑛 = 𝐸𝑛
0 + 𝐸𝑛

1𝜆 + 𝐸𝑛
2𝜆2 + 𝐸𝑛

3𝜆3 + ⋯ 

…(9) 
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𝜓𝑛 = 𝜓𝑛
0 + 𝜓𝑛

1𝜆 + 𝜓𝑛
2𝜆2 + 𝜓𝑛

3𝜆3 + ⋯ 

…(10) 

Here, 𝐸𝑛
0 and 𝜓𝑛

0 are the energy eigenvalues and energy eigen-functions respectively of the unperturbed 

Hamiltonian 𝐻0. 𝐸𝑛
1 and 𝜓𝑛

1 are the first order corrections to the nth eigenvalue and eigen-function 

respectively. Likewise, 𝐸𝑛
2 and 𝜓𝑛

2 are the second order corrections. In principle, we desire to calculate 

𝐸𝑛 and 𝜓𝑛 up to the highest order correction possible. This may at times be not true, particularly in the 

case of asymptotic series. We will discuss this further with an example in the next section.  

 

Using expressions (8), (9) and (10), some amount of algebra allows us to derive expressions for 𝐸𝑛
1, 𝜓𝑛

1 

and 𝐸𝑛
2. 

 

𝐸𝑛
1 =  ⟨𝜓𝑛

0|𝐻′|𝜓𝑛
0⟩ 

…(11) 

 

𝜓𝑛
1 =  ∑

⟨𝜓𝑚
0 |𝐻′|𝜓𝑛

0⟩

𝐸𝑛
0 − 𝐸𝑚

0  𝜓𝑚
0

𝑚≠𝑛

  

…(12) 

 

𝐸𝑛
2 =  ∑

|⟨𝜓𝑚
0 |𝐻′|𝜓𝑛

0⟩|2

𝐸𝑛
0 − 𝐸𝑚

0

𝑚≠𝑛

  

…(13) 

 

Expression (11) is often regarded as the fundamental result of first-order perturbation theory. It says 

that the first order correction to the eigenvalues of the perturbed Hamiltonian is given by the expectation 

value of the perturbation in the unperturbed eigenstate corresponding to the eigenvalue. We use 

expressions (11) and (13) to calculate the ground state and first excited state energies up to the second-order 

perturbative expansion for the quartic anharmonic oscillator in the next section. 

 

 

2.3. Quartic anharmonic potential 
 

We consider a quantum harmonic oscillator perturbed by a quartic anharmonic potential.  The 

Hamiltonian takes the following form: 

�̂� =  −
ℏ2

2𝑚

   𝑑2

𝑑𝑥2 +
𝑚𝜔2𝑥2

2
+  𝜆𝑥4 

…(14) 

Comparing with (8),  

 

�̂�0 =  −
ℏ2

2𝑚

   𝑑2

𝑑𝑥2 +
𝑚𝜔2𝑥2

2
 

…(15) 
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�̂�′ =  𝑥4 

…(16) 

 

Substituting (16) in (11),  

 

𝐸𝑛
1 =  ⟨𝜓𝑛

0|𝑥4|𝜓𝑛
0⟩ 

 

Note that �̂�′ and 𝑥4 are not in the same units. Therefore, we transform 𝑥4 into units of energy using a 

characteristic length scale 𝑑 =  ℏ/𝑚𝜔. Using the raising and lowering operator notation to replace the 

position operator,  

 

⇒ 𝐸𝑛
1 =  

ℏ𝜔

4
⟨𝜓𝑛

0|(�̂�† + �̂�)
4

|𝜓𝑛
0⟩ 

 

We expand the bracketed term and compute the effects of the operators on |𝜓𝑛
0⟩. 16 terms are 

obtained. Upon computing the inner product with ⟨𝜓𝑛
0|, only those terms survive which contain |𝜓𝑛

0⟩. 

We get 

 

ℏ𝜔

4
⟨𝜓𝑛

0|(�̂�† + �̂�)
4

|𝜓𝑛
0⟩ =

ℏ𝜔

4
[
𝑛(𝑛 − 1) + 𝑛2 + 𝑛(𝑛 + 1) + 𝑛(𝑛 + 1)

+
(𝑛 + 1)2 + (𝑛 + 1)(𝑛 + 2)

] 

 

⇒ 𝐸𝑛
1 =  

3

4
ℏ𝜔(2𝑛2 + 2𝑛 + 1) 

…(17) 

 

 

Expression (17) gives the first order perturbative correction to the energy of the nth excited state. Next, 

we compute the second order perturbative correction to the ground state energy. 

 

𝐸0
2 = (

ℏ𝜔

𝑑4
)

2

∑
|⟨𝜓𝑚

0 |𝑥4|𝜓0
0⟩|2

𝐸0
0 − 𝐸𝑚

0

𝑚≠0

  

 

⇒  𝐸0
2 = (

ℏ𝜔

4
)

2

∑
|⟨𝜓𝑚

0 |(�̂�† + �̂�)
4

|𝜓0
0⟩|

2

𝐸0
0 − 𝐸𝑚

0

𝑚≠0

 

 

As we did for 𝐸𝑛
1, the expansion of the operator yields  

 

(�̂�† + �̂�)
4

|𝜓0
0⟩ = 3|𝜓0

0⟩ + 6√2|𝜓2
0⟩ + √4! |𝜓4

0⟩ 
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⇒ (
ℏ𝜔

4
)

2

∑
|⟨𝜓𝑚

0 |(�̂�† + �̂�)
4

|𝜓0
0⟩|

2

𝐸0
0 − 𝐸𝑚

0

𝑚≠0

=  −
(ℏ𝜔)2

2ℏ𝜔

9

2
 −  

(ℏ𝜔)2

4ℏ𝜔

3

2
 

 

⇒  𝐸0
2 =  −

21

8
ℏ𝜔 

 …(18) 

Similarly, we compute the second order perturbative correction to the first excited state energy. 

 

𝐸1
2 = (

ℏ𝜔

𝑑4
)

2

∑
|⟨𝜓𝑚

0 |𝑥4|𝜓1
0⟩|2

𝐸1
0 − 𝐸𝑚

0

𝑚≠1

 

 

⇒ (
ℏ𝜔

4
)

2

∑
|⟨𝜓𝑚

0 |(�̂�† + �̂�)
4

|𝜓1
0⟩|

2

𝐸1
0 − 𝐸𝑚

0

𝑚≠1

=
ℏ𝜔

16
[
5!

4
+ 3 + 12 + 27 + 48] 

  

⇒ 𝐸1
2 =  − ℏ𝜔

15

2
 

…(19) 

 

Finally, putting (4), (17), (18) and (19) together, the full ground and first excited state energies for the 

quartic-perturbed Hamiltonian up to second order perturbative corrections are given by:  

 

𝐸0 =
ℏ𝜔

2
(1 +

3

2
𝜆 −

21

4
𝜆2) 

…(20) 

 

 

𝐸1 =
ℏ𝜔

2
(3 +

15

2
𝜆 − 15 𝜆2) 

…(21) 

In general, these expansions can be determined up to higher order corrections, albeit with great difficulty, 

and not always leading to appreciable applicability. Bender and Wu (Phys. Rev.184 (1969)1231) [8] 
computed the expansion for the ground state energy 𝐸0 of the Hamiltonian under study up to several 

higher order corrections. The expansion up to the sixth order is as follows: 

𝐸0(𝜆) =
ℏ𝜔

2
(1 +

3

2
𝜆 −

21

4
𝜆2 +

333

8
𝜆3 −

30885

64
𝜆4 +

916731

128
𝜆5 −

65518401

512
𝜆6 + 𝒪(𝜆7)) 

…(22) 

The radius of convergence of this series is zero. The coefficients keep growing and the series does not 

converge for any non-zero value of 𝜆. This is an asymptotic expansion. Of course, such expansions are 
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not useless. Specific methods allow isolation of sections which have more significant and convergent 

contribution to the series. Typically, one may calculate the successive terms as long as they keep 

decreasing. If successive terms start to increase, we may truncate the expansion. In our study, even 

though the expansion was used only up to the second order correction, we were restricted to values of 

𝜆 < 0.2 to obtain meaningful perturbed-energy values. For larger coupling parameters, the perturbative 

solutions became unstable. Our analysis of the asymptotic series is briefly illustrated in the results. The 

numerical approach that we shall discuss next rectifies this limitation of perturbation theory.  Since the 

foundation of perturbation theory is within expression (9) and (10), it is strictly restricted to regimes of 

𝜆 within which such expansions can be defined. For larger 𝜆, the framework breaks down even for 

higher order corrections as we can’t assume the expansions (9) and (10). This, of course, is not a 

limitation for numerical methods as we will see in the subsequent sections. 

 

 

3. Path integrals and partition functions 

 

3.1. The Feynman path integral 

 
We’re familiar with the popular Hamiltonian and Lagrangian formulations of classical mechanics. The 

Schrödinger formulation that we have discussed for quantum mechanics is analogous to the Hamiltonian 

approach since, in this framework, the Hamiltonian generates time evolution in the system via the 

Schrödinger time-dependent equation 

 

𝑖ℏ
𝜕𝜓

𝜕𝑡
 =  �̂� 𝜓 

…(23) 

Suppose we start from an initial state 𝜓(𝑥, 0). Solving (23) gives the state at a later time t as the action 

of a unitary time evolution operator on the initial state. 

 

𝜓(𝑥, 𝑡) = 𝑒−𝑖�̂�
𝑡
ℏ 𝜓(𝑥, 0) 

…(24) 

 

Therefore, the probability amplitude of a particle starting at 𝑥𝑖 , 𝑡𝑖 and evolving to 𝑥𝑓 , 𝑡𝑓 can be expressed 

as the following inner product yielding a matrix element of the time evolution operator: 

 

⟨𝑥𝑓 , 𝑡𝑓|𝑥𝑖 , 𝑡𝑖⟩ =  ⟨𝑥𝑓|𝑒−𝑖�̂�(𝑡𝑓−𝑡𝑖)/ℏ|𝑥𝑖⟩ 

…(25) 

This quantity is defined as the propagator. It is an essential quantity to describe time evolution. While 

we motivated it from the Hamiltonian formulation, Feynman’s path integral approach allows us to define 

the propagator in terms of the Lagrangian. As opposed to the classical case, where we can 

deterministically infer that the particle must take the path which extremizes the action (principle of least 

action), for obvious reasons, this can not be inferred for quantum mechanical particles. Thus, we 
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consider the contribution from all possible paths, each weighted by a phase factor determined by the 

classical action for that path. The Feynman path integral is, therefore, defined as: 

 

⟨𝑥𝑓|𝑒−𝑖�̂�(𝑡𝑓−𝑡𝑖)/ℏ|𝑥𝑖⟩ =  ∫ (𝐷𝑥(𝑡) exp [−
𝑖

ℏ
∫ 𝐿(𝑥(𝑡))𝑑𝑡

𝑡𝑓

𝑡𝑖

])     

…(26) 

 

Where 𝐷𝑥(𝑡) denotes an integral over all space-time paths (𝑥, 𝑡) between (𝑥𝑖 , 𝑡𝑖) and (𝑥𝑓 , 𝑡𝑓). 𝐿 is the 

classical Lagrangian while 𝑆 = ∫ 𝐿(𝑥(𝑡))𝑑𝑡
𝑡𝑓

𝑡𝑖
 is the classical action.  

 

𝐿(𝑥(𝑡)) =
𝑚

2
(

𝑑𝑥

𝑑𝑡
)

2

− 𝑉(𝑥(𝑡)) 

…(27) 

 

3.2. Imaginary time 

 
Recall that our considerations for paths have been in space-time dimensions. Therefore, we’ve been 

following the Minkowski metric. It becomes equivalent to the Euclidean metric if time is allowed to 

take only imaginary values. Since Euclidean space offers easier computations and geometry, we make 

the following transformation in (26), also known as the Wick rotation: 

 

𝑡 → −𝑖𝜏 

To yield 

 

⟨𝑥𝑓|𝑒−�̂�(𝜏𝑓−𝜏𝑖)/ℏ|𝑥𝑖⟩ =  ∫ (𝐷𝑥(𝜏) exp [−
1

ℏ
∫ 𝐿𝐸(𝑥(𝜏))𝑑𝜏

𝜏𝑓

𝜏𝑖

]) 

…(28) 

Where  

 

𝐿𝐸(𝑥(𝜏)) =
𝑚

2
(

𝑑𝑥

𝑑𝜏
)

2

+ 𝑉(𝑥(𝜏)) 

…(29) 

We will discretize (28) and (29) for numerical calculations in the subsequent sections. A curious 

motivation to make the imaginary-time transformation is that it draws a one-to-one mathematical 

analogy between the path integral and the partition function of quantum statistical mechanics. To see 

this, we set 𝑥𝑖 = 𝑥𝑓, 𝜏𝑖 = 0 and 𝜏𝑓 =  ℏ𝛽 where 𝛽 = 1/(𝑘𝐵𝑇). Here, 𝑘𝐵 is the Boltzmann’s constant 

and T is the absolute temperature.  

 

⟨𝑥|𝑒−𝛽�̂�|𝑥⟩ = Tr (𝑒−𝛽�̂�) 
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⇒ 𝑍 = ∫ (𝐷𝑥(𝜏) exp [−
1

ℏ
∫ 𝐿𝐸(𝑥(𝜏))𝑑𝜏

ℏ𝛽

0

]) 

…(30) 

The trace of 𝑒−𝛽�̂� is the canonical partition function 𝑍. For our simulations of the harmonic oscillator, 

indeed, we set 𝑥𝑖 = 𝑥𝑓 and 𝜏𝑖 = 0. Therefore, it’s interesting to see that a Monte Carlo program used to 

calculate the path integral can also double as a program to compute the partition function. We will now 

use 𝑍 to construct correlation functions that will yield physical observables, particularly the ones we are 

interested in— the ground and first excited state energies. 

  

3.3. Correlation functions 

 
Physical observables are encoded in correlation functions which are the expectation values of products 

of the position operator. The correlation functions are of the form: 

 

〈𝑥(𝜏1)𝑥(𝜏2)𝑥(𝜏3) … 𝑥(𝜏𝑛)〉 =
1

𝑍
 Tr[e−𝛽�̂� �̂�(𝜏1)𝑥(𝜏2)𝑥(𝜏3) … 𝑥(𝜏𝑛)] 

…(31) 

Now, compare the form of (31) with that of the Boltzmann probability distribution of paths created in 

our Monte Carlo simulation using the metropolis algorithm. 

 

𝑃[𝑥(𝜏)]𝐷𝑥(𝜏) =
1

∫ e−
𝑆
ℏ 𝐷𝑥(𝜏)

e−
𝑆
ℏ 𝐷𝑥(𝜏) 

…(32) 

The denominator on the RHS is like a path integral, which we have shown to be equal to 𝑍 in (30). 

Using this probability distribution, if we find the average of any quantity of the form 𝑥(𝜏1) … 𝑥(𝜏𝑛), we 

get the expression (31). Therefore, an average of 𝑥(𝜏1) … 𝑥(𝜏𝑛) over all the paths in the probability 

distribution (32) will allow us to calculate a statistical correlation function, and thus, physical 

observables! This is the deep connection between path integrals and statistical mechanics that warrants 

our interest in this study. To sum up our approach for the rest of the analysis, we use the path integral 

to motivate a probability distribution of a large number of paths. Next, motivated by the analysis of 

statistical physics, we compute the average of certain quantities like 𝑥(𝜏1) … 𝑥(𝜏𝑛) over all these paths. 

These averages are equivalent to the correlation functions, and thus, will let us calculate physical 

observables and other properties.  

 

In our study, we’re interested in the ground state and the first excited state energy of the quantum 

harmonic and anharmonic oscillator. Using the virial theorem of quantum mechanics, the Hamiltonian 

(14) for a quartic-anharmonic oscillator in the large time, or equivalently, 𝛽 → ∞ limit gives 

 

𝐸0 = 𝑚𝜔〈𝑥2〉 + 3𝜆〈𝑥4〉 

…(33) 
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Thus, this correlation function for our path ensemble following the Boltzmann probability distribution 

will allow us to calculate the ground state energies for various values of the perturbative coupling 𝜆. 

Next, we construct the following correlation function: 

 

𝐺(𝜏) ≡ 〈〈𝑥(𝜏1)𝑥(𝜏2)〉〉 

…(34) 

Where 𝜏 = 𝜏2 − 𝜏1. The double brackets denote double averaging— once over a single path for all 

𝑥𝑖 = 𝑥𝑓, and then over the entire ensemble of paths.  In the large total time, or equivalently, 𝛽 → ∞ 

limit, the ground state dominates: 

 

lim
𝛽→∞

𝐺(𝜏) =  ∑ 𝑒−(𝐸𝑛−𝐸0)𝜏/ℏ |⟨0|𝑥|𝑛⟩|2

∞

𝑛=1

  

And in the large 𝜏 limit,  

 

lim
(𝜏2−𝜏1)→∞

[
d log(𝐺(𝜏))

𝑑𝜏
] = 𝐸1 − 𝐸0 

 

Therefore, after taking the above limits and integrating, for a time step a: 

 

 log (
𝐺(𝜏)

𝐺(𝜏 + 𝑎)
) = (𝐸1 − 𝐸0)𝑎  

…(35) 

Thus, 𝐺(𝜏) for our path ensemble following the Boltzmann probability distribution will allow us to 

calculate the difference between the first excited state energy and the ground state using (35). 

 

 

4. Markov Chain Monte Carlo (MCMC) 

 
Monte Carlo integration allows for estimation of multidimensional integrals by drawing samples from 

a probability distribution and averaging over a large number of samples. While one may simulate the 

exact probability distribution, a prominent method to do so is using Markov chains. By definition, a 

Markov chain is a stochastic model describing a sequence of possible events in which the probability of 

each event depends only on the state attained in the previous event. After a sufficient number of 

successive iterations, the Markov chain reaches an equilibrium distribution. This is called 

thermalization. This equilibrium distribution can be made to replicate the original required probability 

distribution, and thus, be used for drawing samples. Several algorithms may be used to update the 

events. In this study, we use the Metropolis algorithm.  

 

We’ve seen that path integrals are multidimensional integrals over all the possible paths. If we discretize 

the integral, it’s simple to interpret it as a summation over all possible paths, with each path having a 

weight factor given by the action, S, for that path as e−𝑆/ℏ in the imaginary-time formulation. 
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Alternatively, the MCMC method seeks to create a set of paths which follow the probability distribution 

(32) motivated by this weight factor. Therefore, when large number of samples are drawn from this 

distribution, any individual path will inherently carry the weight factor by the virtue of the probability 

distribution. Thus, the weighted summation of path integrals is replaced by a simple unweighted 

summation of paths drawn from the equilibrium probability distribution. 

 

 

4.1. Metropolis algorithm 
 

We will now review the Metropolis algorithm used for generating the Markov chain of paths in 

accordance with the probability distribution (32).  

 

• Start with an arbitrary discrete path of N lattice points (Initialization).   

• Visit each lattice point and randomly update (add) it with some small value 𝛿, which has a 

uniform probability distribution −𝜖 < 𝛿 < 𝜖.  

• Upon the update of each lattice point, calculate the new action ∆𝑆. (This will typically be local 

since Lagrangians are local. Only a few terms in lattice action involve any given lattice point; 

only these need to be calculated.) 

• If ∆𝑆 < 0, retain the update and move to the next lattice point.  

• If ∆𝑆 > 0,  retain the update only with probability ∝ e−∆𝑆/ℏ. That is, if a random number 

between 0 and 1 is less than e−∆𝑆/ℏ, retain the update and proceed. Else restore the previous 

value and proceed. 

• Visiting all lattice points and conducting the above procedure constitutes one Metropolis sweep. 

After initialization, several Metropolis sweeps are required to attain thermalization— the 

equilibrium probability distribution.  

 

 

4.2. Simulation algorithm 
 

Since we update lattice points with a small number −𝜖 < 𝛿 < 𝜖 of the order of quantum fluctuations, 

any two successively generated paths would be highly correlated. This is not ideal for our simulation. 

Thus, we define a correlation parameter,  𝑁cor, which is roughly the number of Metropolis sweeps 

required to remove the correlation between any two successive paths chosen for analysis.  

 

The algorithm for computing any correlation function 〈〈Γ[𝑥(𝜏)]〉〉 is as follows:  

 

• Initialize path. Update path for 5 𝑁cor to 10 𝑁cor Metropolis sweeps to thermalize the lattice.  

• Compute Γ[𝑥(𝜏)] for path, save it, and update the path 𝑁cor times. Repeat a large number of 

times. 

• Average over all the saved values of Γ[𝑥(𝜏)] to obtain the Monte Carlo estimate Γ̅. 

 



 13 

The parameters N, 𝜖, 𝑁cor and the number of total paths analyzed, 𝑁cf , were set as the following using 

the analysis by Peter G. Lepage in reference [1]: 

 

𝑁 = 20 ; 𝜖 = 1.4 ; 𝑁cor = 20 and 5000 < 𝑁cf < 104 

 

4.3. Discretization 
 

Numerical calculations required the following discretized quantities: 

 

The total lattice action: 

 

𝑆lat[𝑥] =  ∑ [
𝑚

2𝑎
(𝑥𝑗+1 −  𝑥𝑗)

2
+ 𝑎𝑉(𝑥𝑗)]

𝑁−1

𝑗=0

 

…(36) 

Where 𝑎 ≡ 𝑇/𝑁, 𝑇 being the total time; and 𝑉(𝑥𝑗) =
𝑚𝜔2𝑥𝑗

2

2
+  𝜆𝑥𝑗

4 is the full potential including the 

quartic perturbation.  

 

The local lattice action: 

𝑆loc[𝑥] =  
𝑚

2𝑎
 𝑥𝑗 (𝑥𝑗 − 𝑥𝑗+1 − 𝑥𝑗−1) + 𝑎𝑉(𝑥𝑗) 

…(37) 

 

 

For ground state energy: 

Γ[𝑥] =
1

𝑁
∑(𝑚𝜔 𝑥𝑗

2 + 3𝜆 𝑥𝑗
4)

𝑁

𝑗=1

 

…(38) 

For the correlation function in (34):  

 

𝐺𝑛 =
1

𝑁
∑ 〈〈𝑥(𝑗+𝑛)%𝑁 𝑥𝑗〉〉

𝑁

𝑗=1

 

…(39) 

Where the %𝑁 sign denotes periodic boundary conditions. 𝐺𝑛 is a Monte Carlo estimate as indicated 

by the expectation value on the RHS. 

 

For the first excited state energy: 

∆𝐸1 =  𝐸1 − 𝐸0 =
1

𝑎
 log (

𝐺𝑛

𝐺𝑛+1 

) 

…(40) 
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4.4. Statistical errors 
 

The relative standard deviation for the expectation value of a random variable in statistics is widely 

known to go as: 

σΓ

〈Γ〉
∝

1

√𝑁cf

 

…(41) 

We use this relation to plot the error bars in our graphs. 

 

 

5. Results 

 
For all simulations and results, we set the system parameters as: 

𝑚 = 𝜔 =  ℏ = 1 

Therefore, we obtain the energies in the units of ℏ. Before illustrating the results for the MCMC 

computations, we briefly show the results obtained by directly solving the multidimensional path 

integral using a standard python package vegas to appreciate how the MCMC approach and the path 

integral approach is indeed equivalent in the statistical limit.  

 

 

5.1. Direct integration 

 
We solve for the propagator in (28) with the discrete lattice action (36) using the vegas package for the 

ground state of the quantum harmonic oscillator. Note that we set 𝑥𝑖 = 𝑥𝑓, thus effectively finding the 

canonical partition function (30). The propagator in the large time limit yields the non-normalized 

probability density as:  

 

lim
𝛽→∞

⟨𝑥|𝑒−𝑇�̂�|𝑥⟩ = e−𝐸0𝑇 |⟨𝑥|0⟩|2 

 

Therefore, integrating over space isolates the exponential constant. Thus the wavefunction is given by 

taking the square root: 

𝜓0 = ⟨𝑥|0⟩ = (
lim

𝛽→∞
⟨𝑥|𝑒−𝑇�̂�|𝑥⟩

∫ lim
𝛽→∞

⟨𝑥|𝑒−𝑇�̂�|𝑥⟩ 𝑑𝑥
)

1
2

  

 

…(42) 
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Figure 1 (left): The propagator for a quantum harmonic oscillator in the ground state. It was obtained 

by evaluating the path integral numerically using the ‘vegas’ package in python for 105 iterations, 8 

time steps of lattice size 0.5, and the mass, m, frequency 𝜔 and ℏ set to 1. 

Figure 2 (right):  The wavefunction for a quantum harmonic oscillator in the ground state calculated 

using the propagator in figure 1. We obtain the expected gaussian distribution as numerical values 

exhibit excellent agreement with the analytical solution.  

 

Figures 1 and 2 demonstrate the use of propagators to compute physical properties of the quantum 

system. As detailed before, in general, propagator-like objects known as correlation functions allow 

computation of any physical property of a quantum system.  

 

 

5.2. MCMC 

 

1. Quantum harmonic oscillator 

We now perform the MCMC computations for the potential 𝑉(𝑥𝑗) =
𝑚𝜔2𝑥𝑗

2

2
 for the ground state 

and the first excited state. We also find the ground state wavefunction using (42). 

 
a. Ground state wavefunction 

 

While figure 2 was plotted using a standardized library to directly compute the path integral, 

figure 3 illustrates the same analysis done using the MCMC method. We observe a clear 

equivalence in the results, and thus, have convincing evidence to proceed with our analysis of 

the unperturbed and perturbed energies. 
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Figure 3: The wavefunction for a quantum harmonic oscillator in the ground state calculated 

using MCMC method for 5000 paths with 20 lattice points; spacing = 0.9. The plot illustrates 

an equivalence with figure 2, thereby demonstrating the equivalence between MCMC method 

and direct solution to the Path Integral. 

 

Our MCMC method lacks optimization to increase computational speeds. In light of our 

computational equipment, an average over only 5000 paths was feasible. Thus, we observe 

significantly larger error bars, as well as deviation from the analytical result in figure 3 

compared to figure 2 where 105 paths were used.  

 

b. Ground state energy 

 

 
Figure 4: Convergence of the ground state energy with time steps for the quantum harmonic 

oscillator computed using the MCMC method. We get approximately 𝐸0 = 0.49 ± 0.01 in 

units of ℏ. The horizontal line indicates the analytical ground state energy �̃�0 = 0.50.  MC 

average over 104 paths; 20 lattice points; 0.5 lattice spacing; 𝜖 = 1.4 ; 𝑁cor = 20. The error 

bars indicate underestimation of statistical errors.  
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We obtain the ground state energy of the quantum harmonic oscillator as 𝐸0 ≈ 0.49 ± 0.01. 

The ground state energy does not vary with time steps as expression (33) shows that the entire 

path is used for computing a single number as the correlation function. Therefore, we do not 

observe any explicit convergence.  

 

c. First excited state energy 

 

 
Figure 5: Convergence of the first excited state energy with time steps for the quantum 

harmonic oscillator computed using the MCMC method. We get approximately 𝐸1 = 1.50 ±

0.01  in units of ℏ. The horizontal line indicates the analytical energy �̃�1 = 1.50.  MC 

average over 104 paths; 20 lattice points; 0.5 lattice spacing; 𝜖 = 1.4 ; 𝑁cor = 20.  

 

We obtain the first excited state energy of the quantum harmonic oscillator as 𝐸1 = 1.50 ±

0.01 . The MC result converges quickly at the first time step. However, the results diverge for 

larger time steps. Thus, accounting for this convergence and divergence behavior, we select 

only the time step = 0 values for all results in the anharmonic potential case.  

 

2. Quartic-anharmonic oscillator 

We now perform the MCMC computations for the potential 𝑉(𝑥𝑗) =
𝑚𝜔2𝑥𝑗

2

2
+  𝜆𝑥𝑗

4 for the ground 

state and the first excited state with varying values of 𝜆 and compare the results with the 

corresponding perturbative solutions derived in section 2.3. We make the comparison for both, the 

first and second order perturbation theory. Finally we illustrate the asymptotic nature of the ground 

state perturbative expansion and discuss the limit within which it is valid.  

 

a. Ground state energy 

 

MC average over 5000 paths; 20 lattice points; 0.4 lattice spacing; ϵ = 1.4 ; Ncor = 20. 
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Figure 6: Comparison of the MCMC solutions and the first and second order perturbative 

solutions for the ground state energy of the quartic anharmonic oscillator with varying 

perturbative coupling 𝜆. The perturbative solutions diverge for approximately 𝜆 > 0.075 

while the MCMC solutions remain stable. Within the error bars, the MCMC solutions 

indicate a smooth increase in the ground state energy for increasing coupling 𝜆. 

 

For very small  𝜆, the perturbative and MCMC solutions have close agreement. As expected, 

within this range, the second order perturbative solution has better agreement with the MCMC 

solutions as compared to the first order. The second order solution also indicates that the 

perturbative solutions are stable only for approximately 𝜆 < 0.075. However, the MCMC 

solutions indicate a steady increase with increasing coupling. We verify this for a larger range 

of coupling in figure 7. 

 
 Figure 7: MCMC solutions for the ground state energy of the quartic anharmonic oscillator 

with varying perturbative coupling 𝜆. The energy solutions have a non-linear stable increase 

with increasing coupling even for large values of 𝜆.  
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For 𝜆 → 0, the perturbative and the MCMC solutions converge to the harmonic oscillator 

ground state energy, 𝐸0 = 0.5. 

 

 

b. First excited state energy 

 

MC average over 5000 paths; 20 lattice points; 0.5 lattice spacing; ϵ = 1.4 ; Ncor = 20.  

Note that we’re finding the difference between 𝐸1 and 𝐸0, that is ∆𝐸1, and not the absolute 

value for 𝐸1. 

 

 
Figure 8: Comparison of the MCMC solutions and the first and second order perturbative 

solutions for the difference between the first excited and ground state energy of the quartic 

anharmonic oscillator with varying perturbative coupling 𝜆. The perturbative solutions 

diverge for approximately 𝜆 > 0.2 while the MCMC solutions remain stable.  

 

Again, for small  𝜆, the perturbative and MCMC solutions have close agreement with the 

second order perturbative solution having better agreement with the MCMC solutions as 

compared to the first order. The second order solution also indicates that the perturbative 

solutions are stable only for approximately 𝜆 < 0.2. However, the MCMC solutions indicate a 

steady increase with increasing coupling. We verify this for a larger range of coupling in figure 

9. 
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Figure 9: MCMC solutions for ∆𝐸1of the quartic anharmonic oscillator with varying 

perturbative coupling 𝜆. The energy solutions have a non-linear stable increase with 

increasing coupling even for large values of 𝜆.  

 

For 𝜆 → 0, the perturbative and the MCMC solutions converge to the harmonic oscillator 

case, ∆𝐸1 = 1.0. 

 

 

c. Asymptotic expansion of ground state energy 

 

The perturbative solutions for the ground state in figure 6 indicate a range of 𝜆 for which these 

solutions may be valid approximations. Naively, from the perturbation theory, it seems we 

should be able to make better approximations and increase the range of 𝜆 for which the solutions 

might be valid by solving higher and higher order perturbative solutions. However, as explained 

in section 2.3 using expression (22), the perturbative expansion for the ground state is an 

asymptotic expansion. We illustrate this in figure 10. 
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Figure 10: nth order perturbative solution for the ground state energy of the quartic 

anharmonic oscillator. The expansion is asymptotic and does not converge even for lower 

order solutions. 

 

Clearly, the asymptotic effects are very large for 𝜆 ≈ 1. Thus, we undertook two remedies for 

this. First, we considered the perturbative solution only for 𝜆 < 0.2. Next, we calculated 

successive terms in the expansion and truncated the series when successive terms began 

increasing. By these standards, we determined the second order solution as the most appropriate 

solution for our case. Thus, in our analysis for the ground state, we used only the second order 

perturbative solution despite having the higher order corrections.  

 

 

 

6. Discussion 

 
Our results for the MCMC simulations have strong agreement with the analytical values of the quantum 

theory, and provide a robust, albeit computationally expensive, mechanism for computing solutions 

when analytical solutions are not possible. It has also verified an equivalence between the analytical 

path integral and the Monte Carlo computations, which are fundamentally statistical analogues of the 

quantum theory. Thus, we have successfully explored an alternate approach for calculating properties 

of the quantum theory by formulating the problem in the path integral framework, making the analogy 

with the canonical ensemble, and then computing Monte Carlo integrals. Of course, in practice, such an 

exercise would be an overkill to solve a system like the quantum harmonic oscillator where analytical 

solutions exist. However, for anharmonic oscillators, our results have demonstrated greater reliability 

of this method compared to perturbative analysis.  
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This approach becomes more important in fields where the path integral framework is more widely 

used, such as lattice QCD. Our future aim is to apply this approach to a classical open string which 

models the interactions between a quark-antiquark pair. The challenge would involve discretizing the 

string Lagrangian while preserving its reparameterization invariance.  

 

In order to use this approach for different systems, we will have to rigorously develop a method to 

determine the simulation parameters– the number of lattice points; the lattice spacing; the quantum 

fluctuation parameter,  ϵ; the correlation parameter, Ncor; the thermalization time; etc. Since we had a 

well-studied system for the current work, we were able to refer to existing literature for optimum 

parameters. This may not be possible for novel applications.  
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